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Abstract 

This note derives the distribution of electrical spreading currents 
along the length of solid conducting objects for which the length sub- 
stantially exceeds the width. Sources and sinks of DC (or very low 
frequency AC) current are placed at one end of the object, and the 
fall-off of spreading current is studied as a function of length. The 
fall-off can be great; for instance in the case of a solid rectangular 
object, the fall-off of spreading current along the length is 27dB per 
unit width. Comparison is made to inductive coupling, which becomes 
important as frequency increases. 



1    INTRODUCTION 

When we inject a current into a solid conducting body at one point 

on its surface, and allow the current to flow back out at another point, the 

current distribution within the body spreads out around the direct path 

from source to sink. This is called "current spreading", and is important in 

semiconductor design, where crosstalk among different devices on the same 

chip must be minimized [1]. 

In this note we are particularly interested in the decay of DC current 

spreading along the length of a long conducting body when both source 

and sink are at one end. We will find that the magnitude of spreading 

current generally falls off like exp(—kz), where z is the distance away from 

the current source along the long axis of the body, and A; is a characteristic 

decay coefficient. 

In the language of electrical engineering, we drive the body as a (poor!) 

transmission line with DC in differential mode at one end, and measure the 

decay along the distance z as some number of dB per unit length, 

X = 201og10(e)£;    dB/length. (1-1) 

Note that k is independent of the resistivity of the material (as long as the 

body is uniform in composition); it depends only on geometry of the body. 

The current source is assumed to supply the necessary voltage to drive the 

current; the decay is due to geometrical effects on the current distribution, 

as it wends its way through the resistive material. Experimentally, we can 

measure the fall-off of voltage V(z) over a cross-section of the body, as a 

function of distance z in the long direction of the body; see Figure 1. In fact 

this measurement would be easy to do and is strongly recommended for any 

practical applications. 
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Figure 1: Measurement of current spreading for a long object. We inject a 
known current in differential mode at the end of the semi-infinite object. We 
then measure voltages V(z) across the object at various distances z in the 
long dimension. The body has cross-section S bounded by curve C. 

At DC, the only important length scale is the cross-section size. For AC 

at all but the lowest frequencies, another length scale becomes important, 

namely the skin depth; and inductive effects will become important too. We 

begin by studying the DC problem. Finite-frequency effects including skin 

depth and induction will be briefly discussed in Section 4. 



2    DC EQUATIONS AND THEIR SOLUTION 

We use cartesian coordinates (x, y, z) and model our solid body as a 

right cylinder with long axis along z. The cross-section of the body is a 

region S in the (rr, y) plane bounded by a curve C, and is constant in z. 

One end of the body lies in the plane z = 0, and the body extends over 

0 < z < oo, and so is half-infinite. 

Hollow cylindrical bodies can be equally well modelled by using a curve 

C which consists of two (or more) separated components, one inside the 

other. A pair of separate conducting bodies could be modelled by a cross- 

section S consisting of two separate disconnected components; however we 

will take S to be connected unless otherwise specified. 

The body is composed of material of some constant resistivity a. We 

study the stationary Maxwell equations [2] in which all time derivatives are 

neglected, and so all fields, and the current, will be functions of (x, y, z) but 

not time t.1 Steady electrical current flow within the body is described by 

the current density J and obeys the equations 

V-J = 0,    J = CTE (2-1) 

where E is the electric field.   On the sides of the cylinder no current flows 

across the surface, so the boundary condition is 

n • J = 0   on C for all z > 0 (2-2) 

where n is the unit normal to C in any plane z — const. On the end z = 0 

of the cylinder we impose some source JQ of injected and sunk currents, 

—» 
z • J = Jo(x, y)    at z = 0. (2-3) 

'In this section, frequency is DC, or so low that inductive effects can be neglected; for 
the latter see Section 4. 



The electric field can be expressed in term of the gradient of the electostatic 

potential <f>, 

E = -V$ (2-4) 

and eliminating both E and J from Eqs. (3.2,3.5) we obtain equations deter- 

mining $ as 

V2$   =   0    inside the body (2-5) 

n • V$   =   0    on C for all z > 0 (2-6) 

^—   =   -a~lS(x,y)    atz = 0 (2-7) 
oz 

which describe a well posed boundary value problem with Neumann bound- 

ary conditions. (For notation and methods see, e.g., [2]). 

This problem can be solved by separation of variables, 

$(x,y,z) = *l>(x,y)f(z) (2-8) 

V2xp{x,y) + k2ijj(x,y) =   0 (2-9) 

n   V-0 =   0    on C (2-10) 

d2f(z) 
=   -k2f{z) (2-11) 

with corresponding boundary conditions at z = 0, see below, where k > 0 is 

a separation constant, and where the Laplacian operator in the (x, y) plane 

is 
d2       d2 

v-=h+h • <2'12) 

We can form any solution $ by use of the eigenfunctions of the transverse 

Neumann boundary value problem, 

V2Mx,y) = -Xii>i(x,y),    n • VV> = 0   on C (2-13) 

with eigenvalues Ai, i = 0,1,2... by means of the expansion 
oo 

$(x, y,z) = Yi Ciipi(x, y) exp(-kiz) (2-14) 
»=o 



where A; = kf. The eigenvalues A^ will be assumed ordered by nondecreasing 

value, and the eigenfunctions ip(x, y) will be normalized to unity in the L2 

norm. 

For any body the lowest eigenvalue and its eigenfunction are always 

A0   =   0 (2-15) 

tpo   =   Ci    (ci is a normalizaton constant) (2-16) 

which corresponds to uniform current injection into the end of the body with 

no current sink; such a current has ko = 0 and therefore is constant in the 

2-direction; it represents common-mode current flow through the body to 

Z = 00. 

Since we are interested in differential mode current injection we will 

henceforth assume that c0 = 0; then the decay of the spreading current in z 

is controlled by the next lowest eigenvalue Ai > 0. 

fci   =   VXi, (2-17) 

K   =   (8.69dB)fci. (2-18) 



3    RESULTS FOR BODIES OF VARIOUS SHAPES 

Example 1) The body is a solid rectangular object, so the cross- 

section S is a solid rectangle of dimensions d by w in the x and y directions 

respectively (with d > w). Then 

ipi = C\Cos{irx/d) independent of y                      (3-1) 

Ai = (ir/d)2 (3-2) 

jfci = n/d (3-3) 

K = 27dB/d. (3-4) 

This result shows a remarkably fast fall-off K.  For instance, to achieve an 

80 dB fall-off, we need only go in the long direction three times the width. 

Example 2) The body is a hollow rectangular box, so the cross-section 

S is a hollow square of dimensions d by w in the x and y directions respec- 

tively (with d > w), and with some small wall-thickness t. Then to a good 

approximation 

ipi = ci cos(irp/(d + w)) (p is distance along the perimeter) (3-5) 

Ai = (7t/{d + w))2 (3-6) 

hi = n/(d + w) (3-7) 

K = 27dB/(d + w) (3-8) 

independent of t when t <C w. 

Example 3) The body is hollow and has a thin-walled cross-section of 

any shape, with P the total perimeter, that is, the length of C. Then 

hi   =   2TT/P (3-9) 

K   =   54dB/P, (3-10) 



approximately independently of the wall-thickness t«P 

Example 4) The body is a solid circular cylinder, so the cross-section 

S is a solid disk of diameter d. Then eigenfunctions are constructed out of 

Bessel functions Jn(r) and angular functions exp(im0), and 

ipi = ci J\(kir) exp(z0)    (r and </> are polar coordinates) (3-11) 

\1 = 4(x\2
0 + l2)/d2    (x'10 is the first root of J[) (3-12) 

kx = 4.19/d (3-13) 

K = 36dB/d. (3-14) 

Example 5) The body is an "I-beam", so the cross-section is a letter 

"I" with depth d (in the ^-direction), width w (< d) (in the x-direction), and 

small thickness t. Then a good approximation is 

ipi   =   Ci cos(7ry/d)    independent of x (3-15) 

A!     =     (TT/d)2 (3-16) 

ki   =   n/d (3-17) 

K   =   27dB/d. (3-18) 

These examples are summarized in Figure 2. 

Example 6 We now turn to bodies constructed of discrete components, 

such as lattices of metal struts. To model these bodies we employ infinite 

ladders of resistors, as shown for example in Figure 3(a). Each stage consists 

of one transverse resistor (a "rung") Ri, and two longitudinal resistors (the 

"stringers") R2. To compute the properties of such a ladder, use a well- 

known trick shown in Figure 3(b): The unknown effective resistance Rx 

looking into the end the ladder can be determined by observing that adding 

one more stage to the ladder, leaves it invariant, so 

1/Rx = 1/Ri + l/(Rx + 2R2), (3-19) 
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Figure 2: Cross sections, dimensions and values of K for the examples. 



Rx **• ^r 

t\») R- 

Figure 3: (a) A semi-infinite resistor ladder. All transverse resistors are R\. 
All longitudinal resistors are R2- (b) The effective resistance Rx looking into 
the ladder, which can be determined by adding one stage, which gives the 
same Rx- 

which is readily solved for Rx as 

Rx = -i?2 + \JR22 + 2R1R2 (3-20) 

For instance, if all resistors are equal, Ri = R2, the fall-off is readily shown 

to be 

K = 11 dB/stage    ladder of equal resistors (3-21) 

To achieve higher values of K we can subdivide the R2s and add more rungs 

Ri for a total of N rungs per stage, which we model with R2 = Ri/N. We 

compute 
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N K 
1 lldB/stage 
2 17dB/stage 
3 21 dB/stage 
4 24dB/stage 
5 27 dB/stage 

10 39 dB/stage 

These results show that adding more "rungs" increases the fall-off substan- 

tially. 

Example 7 We now turn to 3-dimensional resistor ladders, as in Figure 

4(a). Each stage consists of four transverse resistors R\, and four longitudinal 

resistors i?2- How shall we compute this? The "ladder trick" does generalize, 

but becomes cumbersome. A faster computation goes as follows. The ladder 

shows a four-fold rotational symmetry when we look along it from its end, so 

the eigenfunctions of current distribution must be proportional to exp(ira0) 

for m = (0,1, 2) where 4> is angle about the long axis; see Figure 4(b,c,d). As 

can be expected, the m = 0 mode is common-mode current flow along the 

ladder to infinity, and can be ignored. The next-lowest modes are the two 

m = 1 modes, which are degenerate, shown in Figure 4(c). However, in these 

modes, half the transverse resistors Ri carry no current because the voltage 

across them vanishes by symmetry. Therefore half of all the resistors R\ can 

be chopped out, and the box decomposes into two 2-dimensional ladders as 

in Example 6). Therefore all the values of K are exactly the same as found 

above for Example 6). 

Again, these examples apply at frequencies so low that inductive effects 

can be neglected. What happens at higher frequency? 

11 
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Figure 4: (a) A more elaborate semi-infinite resistor ladder, with a box- 
like stage. All transverse resistors are R\. All longitudinal resistors are R2. 
(b,c,d) The symmetries of the normal modes of this ladder are like exp(im(fi) 
with m = (0,1, 2) respectively. 

12 



FINITE-FREQUENCY EFFECTS: INDUC- 
TION 

As frequency u is raised, the first effect to become important is induction 

of electomotive force (EMF) by the time-dependent magnetic field B (while 

charge separation, and displacement current associated with time-dependent 

E are still negligible). Maxwell's equations can then be written [2] 

V • J   =   0,        J = <TE (4-1) 

V x B   =   //J (4-2) 

V x E   =   —dB/dt    (induction equation) (4-3) 

E   =   -V$-d&/dt (4-4) 

B   =   V x A (4-5) 

where (4-6) 

A   =   vector potential with V • A = 0. (4-7) 

Here, all fields depend on time like exp(—iut), and moreover depend on 

spatial coordinates (x,y,z); \x is the magnetic permeability of the material. 

Eliminating E, B and J leads to a Laplace equation for $, and a diffusion 

equation for A 

V2<S>   =   0 (4-8) 

V2A + iiJ,aujA   =   -/jcrV$. (4-9) 

The "skin effect" is one important effect governed by these equations: current 

tends to concentrate near the surface of a conducting body, in a layer of 

thickness roughly 

8 = sjljiiou    "skin depth" (4-10) 
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with fields and currents falling off like exp(—d/S) with distance d from the 

surface. When this is the main effect at finite frequency, we expect Eq. (3-10) 

above to still apply approximately, with the "body" replaced by a thin shell 

of thickness t ~ 6. To estimate the effect, recall that skin depth is of order a 

few cm in common metals at 60Hz, except that it may be much less due to 

permeability of ferromagnetic materials. Thus for frequencies of 60Hz and 

higher, the thin-shell approximation Eq. (3-10) applies. 

However a different effect may be much more important. Unlike cur- 

rents, magnetic fields can traverse free space outside the body; different parts 

of the body can therefore be coupled by mutual inductance. This coupling 

can be expected to fall off, not exponentially, but as a power-law of distance 

z. (This is because the exciting current generally has some magnetic ^-pole 

moment, and the magnetic field falls off like (distance)~e~2 from it. Tech- 

nically, the equation for A has an unbounded domain, and therefore has a 

continuous spectrum of eigenvalues.) 

Let us estimate the inductive effect of finite frequency / in a rectangular 

body of cross-section d x w as above. If the current source has a magnetic 

dipole moment ~ Id2, then the electric field induced by the time-changing 

magnetic field propagating through free space is roughly 

^induct ~       0   9 (4-11) 
ozz 

where UJ = 2nf is the angular frequency and //o is the constant permeability 

of free space (and we take the material as not strongly magnetic). This must 

be compared with the conductive electric field inside the material 

I 
^conduct 

adw 
exp(-kz) . (4-12) 

Their ratio is 

induct  ^ dw   exp(kz)d2 

-C'conduct " Z 
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where Eq. (4-10) has been used to eliminate u>. So in this example, inductive 

effects dominate spreading current at modest values of z, when S is no larger 

than the transverse size. In a hollow body (or "I-beam") of thickness t, the 

corresponding expression is 

induct       dt   exp(kz)d2 

r^ 

^conduct 0 Z 

and inductive effects will certainly dominate when S < t. 

(4-14) 

For a discrete ladder (as in Examples 6 and 7 above), one significant 

effect is that each component now has a combination of resistive and self- 

inductive impedance. When this is the main effect of finite frequency, we still 

find exponential decay of currents along the ladder, and K can computed in 

just the same way.2 

However, once again, mutual inductance is likely to dominate. The 

mutual inductance of distant discrete elements generally falls off as a power- 

law in stage number along the ladder, not as an exponential, and is likely to 

dominate at long distances. 

For both continuous and discrete bodies, the important effect at high 

enough frequency is therefore likely to be the inductive coupling of distant 

elements, which would have to be computed by different methods than devel- 

oped in this note. At yet higher frequencies, charge separation and capacitive 

coupling will eventually become important too. Finally, at RF frequencies, 

displacement current becomes important, giving radiative effects. 

2K now has an imaginary part which describes an uninteresting phase shift along the 
ladder. 
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5    CONCLUSIONS 

We have shown how to compute the fall-off of spreading current in long 

conducting objects, for differential-mode DC current injection at one end. We 

have also computed a variety of examples. The results show that the fall-off is 

remarkably fast in many examples. Practical applications are recommended 

when the control of spreading currents is desirable. AC current spreading 

will differ due to inductive effects, and must also be carefully assessed. 
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